RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College affiliated to University of Calcutta)

B.A./B.Sc. SECOND SEMESTER EXAMINATION, MAY 2018

FIRST YEAR (BATCH 2017-20)

: 29/05/2018 Date : 11.00 am - 1.00 pm Time

CHEMISTRY (General) Paper : II

Full Marks : 50

[Use one Answer Book for each Group]

Group-A

Unit I

An	Answer <u>any one</u> question: [1×13]			
1.	a)	State and explain Werner's theory of coordination compounds. Explain the differences between perfect and imperfect complex.	3+2	
	b)	What are metal chelates? Give an example. Why chelate complex is more stable than non- chelated complex? Give one use of a metal chelate in analytical chemistry. 1+1-	+2+1	
	c)	What do you mean by radius ratio rule? Determine the limiting radius ratio for coordination number 4 for an ionic solid.	1+2	
2.	a)	Establish Born-Haber cycle for the formation of NaCl crystal from metallic Na and gaseous Cl_2 . Calculate the lattice energy of sodium chloride from the data given below: Sublimation energy of sodium = 109 Ionisation energy of sodium = 496 Dissociation energy of chlorine = 244 Electron affinity of chlorine = -348		
		Heat of formation of sodium chloride = -411 (The energy values are given in KJ/mole unit)	2+3	
	b)	Discuss VSEPR theory and explain the shape of XeF_2 .	3	
	c)	Formation of divalent cation and anion are endothermic yet MgO is a stable ionic solids, explain with reason.	2	
	d)	From the IUPAC nomenclature write the name of the following: $1\frac{1}{2}$ $K_4[Fe(CN)_6]$ and $[Co(NH_3)_6]Cl_3$	2+11/2	
<u>Unit II</u>				

Answer any one question:

2

3.	a)	Calculate the bond order of peroxide anion (O_2^{2-}) and dioxygenyl cation (O_2^{2+}) from the	
		molecular orbital diagram.	3

- b) Distinguish between Disproportionation and Comproportionation reaction with examples.
- c) Explain the reaction in terms of Lux Flood concept: $3 \text{ CaO} + P_2O_5 \rightarrow Ca_3(PO_4)_2$
- What happens if Ge is doped with little arsenic? d)
- What is the pH of pure water at 100°C? K_w at 100°C is 5.45 × 10⁻¹³. Comment on the acidity / e) basicity/neutrality of water at that temperature. 2 + 1

1.	a)	Draw the MO diagram of CO molecule and comment on why CO acts as a pi-acid ligand.	3+1
	b)	What are standard and formal electrode potentials? Explain with an example.	2

- What are standard and formal electrode potentials? Explain with an example. b)
- c) On the basis of the band theory explain conductor, semi-conductor and insulator.
- (i) Give an example of Redox indicator. d)
 - (ii) From the two electrodes Cu^{+2} / Cu ($E^{\circ} = 0.337$ V) and Ag^{+}/Ag ($E^{\circ} = 0.799$), calculate the E° of the cell. 1+2

[1×12]

2

2

2

3

Group-B

Unit I

Answer any one question:		r any one question:	[1×15]	
5.	a)	Write down the Fischer projections of the following compounds:	2	
		(i) $(S) - C_6^{H} CH(OH) COOH$ (ii) $(R) - CH_3CH(NH_2) OH$		
	b)	Classify the followings as electrophiles and nucleophiles.	2	
		$\stackrel{\oplus}{\mathrm{NO}}_2$, NH ₃ , $\stackrel{(-)}{\mathrm{CI}}$, BF ₃		
	c)	Write the mechanism of the following reaction.	2	
		$R-CH = CH_2 + HBr \longrightarrow R CH (Br) - CH_3$		

Write E and Z forms of 2-pentene. d)

The following compound A, on ozonolysis gave two more compounds B and C. Find out the e) structure of A.

Write down the mechanism for the following reactions: f)

i)

ii)
$$\bigcirc \xrightarrow{C_2H_5Cl} AlCl_3$$

Complete the following reaction (no mechanism require): g)

$$Ph-C \equiv CH \xrightarrow{NaNH_2} CH_3CH_2I \rightarrow$$

Find out the absolute configuration (R / S) for the following molecule at C_2 and C_3 carbon center 6. 3 a)

b) Complete the following reactions with proper explanation:

i)
$$CH_3 - C \equiv CH \xrightarrow{1\% HgSO_4} 20\% H_2SO_4$$

ii)
$$(H_3 \rightarrow H_2O_2/\bar{O}H)$$

2+2+2

2+2

1

2

2

	c)	Write short notes on Markownikoff's rule and peroxide effect.	2
	d)	How can you distinguish between 1–Butyne and 2–Butyne by a chemical test.	2
	e)	Compare the stability and reactivity of primary, secondary and tertiary carbocations.	2
		<u>Unit II</u>	
An	Answer any one question: [1×10]		
7.	a)	Write down short note (any two): 2	× 21⁄2
		i) $S_N 2$ reaction of alkyl halide	
		ii) E ₁ elemination	
		iii) Perkin Reaction	
	b)	Write down the suitable reagents and conditions for the following conversion:	3
		? → CH₃COOH	
		CH₃CHO ? > CHI₃	
		[?] →Cl₃CCHO	
	c)	Convert: Benzaldehyde to Cinnamic acid	2
8.	a)	Complete the following reaction with mechanism:	3
		CH_3 H $\xrightarrow{(-)OH}$	
	b)	Explain Hofmann's elimination reaction, with an example.	2
	c)	Aldehydes are in general more reactive than Ketones towards nucleophilic addition reactions.	
	,	Explain.	2
	d)	Convert: Benzaldehyde to Benzoin.	2
	e)	Identify the products in the following reactions:	1

(3)

- × -